Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 958
Filtrar
1.
Proc Biol Sci ; 291(2021): 20240215, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38654651

RESUMO

Phenotypic plasticity is the ability of a single genotype to vary its phenotype in response to the environment. Plasticity of the skeletal system in response to mechanical input is widely studied, but the timing of its transcriptional regulation is not well understood. Here, we used the cichlid feeding apparatus to examine the transcriptional dynamics of skeletal plasticity over time. Using three closely related species that vary in their ability to remodel bone and a panel of 11 genes, including well-studied skeletal differentiation markers and newly characterized environmentally sensitive genes, we examined plasticity at one, two, four and eight weeks following the onset of alternate foraging challenges. We found that the plastic species exhibited environment-specific bursts in gene expression beginning at one week, followed by a sharp decline in levels, while the species with more limited plasticity exhibited consistently low levels of gene expression. This trend held across nearly all genes, suggesting that it is a hallmark of the larger plasticity regulatory network. We conclude that plasticity of the cichlid feeding apparatus is not the result of slowly accumulating gene expression difference over time, but rather is stimulated by early bursts of environment-specific gene expression followed by a return to homeostatic levels.


Assuntos
Ciclídeos , Animais , Ciclídeos/genética , Ciclídeos/fisiologia , Comportamento Alimentar , Crânio , Regulação da Expressão Gênica , Fenótipo
2.
J Exp Biol ; 227(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323461

RESUMO

Natural variation in environmental turbidity correlates with variation in the visual sensory system of many fishes, suggesting that turbidity may act as a strong selective agent on visual systems. Since many aquatic systems experience increased turbidity due to anthropogenic perturbations, it is important to understand the degree to which fish can respond to rapid shifts in their visual environment, and whether such responses can occur within the lifetime of an individual. We examined whether developmental exposure to turbidity (clear, <5 NTU; turbid, ∼9 NTU) influenced the size of morphological structures associated with vision in the African blue-lip cichlid Pseudocrenilabrus multicolor. Parental fish were collected from two sites (clear swamp, turbid river) in western Uganda. F1 broods from each population were split and reared under clear and turbid rearing treatments until maturity. We measured morphological traits associated with the visual sensory system (eye diameter, pupil diameter, axial length, brain mass, optic tectum volume) over the course of development. Age was significant in explaining variation in visual traits even when standardized for body size, suggesting an ontogenetic shift in the relative size of eyes and brains. When age groups were analyzed separately, young fish reared in turbid water grew larger eyes than fish reared in clear conditions. Population was important in the older age category, with swamp-origin fish having relatively larger eyes and optic lobes relative to river-origin fish. Plastic responses during development may be important for coping with a more variable visual environment associated with anthropogenically induced turbidity.


Assuntos
Ciclídeos , Animais , Ciclídeos/fisiologia , Olho , Encéfalo/anatomia & histologia , Água Doce/química , Visão Ocular
3.
Artigo em Inglês | MEDLINE | ID: mdl-37956900

RESUMO

We tested the hypothesis that water Ca2+ is involved in control of branchial Na+ permeability in low pH tolerant convict cichlids and black neon tetras. We measured Na+ efflux in water with different Ca2+ concentrations during exposure to low pH, silver, and copper, at levels which are known to stimulate Na+ efflux. For convict cichlids at pH 7.5 exposure to 0 µmol L-1 Ca2+caused Na+ efflux to rise 2.5 times above controls at 100 µmol L-1 Ca2+. However, raising [Ca2+] to 500 µmol L-1 had no effect. Upon exposure to pH 3.5 (control [Ca2+]) Na+ efflux rose almost 5× and increasing the [Ca2+] 5-fold did not reduce the magnitude of stimulation. Exposure to 1 µmol L-1 silver and 25 µmol L-1 copper stimulated Na+ efflux 7×, and 2×, respectively. Raising [Ca2+] concentration during metal exposure halved the stimulation of Na+ efflux caused by silver, and eliminated the stimulation elicited by copper. For black neon tetras raising or lowering water [Ca2+] had no effect on Na+ efflux at pH 7.5. Exposure to pH 3.5 caused Na+ efflux to rise 2.5× but changing [Ca2+] had no effect. Exposure to 1 µmol L-1 silver, or 25 µmol L-1 copper caused Na+ efflux of tetras to rise 4-fold and 3-fold, respectively. Raising [Ca2+] during silver exposure reduced the stimulation of Na+ efflux by about 50%, but during copper exposure increased [Ca2+] had no effect on stimulation of Na+ efflux. These results suggest water Ca2+ plays a role in control of branchial Na+ permeability in cichlids, but perhaps not tetras. In addition, the silver and copper concentrations required to inhibit Na+ uptake and stimulate Na+ efflux were higher than the concentrations used on non-characids and non-cichlids, which indicates that our fish are much more tolerant of these metals.


Assuntos
Characidae , Ciclídeos , Animais , Ciclídeos/fisiologia , Cálcio , Água , Cobre , Prata/farmacologia , Neônio/farmacologia , Sódio , Permeabilidade , Brânquias
4.
Fish Physiol Biochem ; 50(2): 527-541, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38099984

RESUMO

The widespread use of pesticides in some areas where fish species such as tilapia are farmed may cause damage to the environment and affect commercial fish and therefore, human health. Water leaching with the pesticide trichlorfon, during the fumigation season in the field, can affect water quality in fish farms and consequently affect fish health. At the same time, the use of immunomodulatory compounds such as ß-glucan supplied in the diet has become widespread in fish farms as it has been shown that improves the overall immune response. The present research examines the immunomodulatory impacts observed in macrophages of Nile tilapia (Oreochromis niloticus) after being fed a diet supplemented with ß-glucan for 15 days, followed by their in vitro exposure to trichlorfon, an organophosphate pesticide, at concentrations of 100 and 500 µg mL-1 for 24 h. The results showed that ß-glucan diet improved the viability of cells exposed to trichlorfon and their antioxidant capacity. However, ß-glucan did not counteract the effects of the pesticide as for the ability to protect against bacterial infection. From the present results, it can be concluded that ß-glucan feeding exerted a protective role against oxidative damage in cells, but it was not enough to reduce the deleterious effects of trichlorfon on the microbicidal capacity of macrophages exposed to this pesticide.


Assuntos
Ciclídeos , Doenças dos Peixes , Inseticidas , Tilápia , beta-Glucanas , Humanos , Animais , Triclorfon , beta-Glucanas/farmacologia , Dieta/veterinária , Imunidade Inata , Suplementos Nutricionais/análise , Ciclídeos/fisiologia , Macrófagos , Ração Animal/análise , Doenças dos Peixes/microbiologia
5.
Behav Brain Res ; 461: 114819, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38141783

RESUMO

Behavioural interactions between conspecifics rely on the appreciation of social cues, which is achieved through biochemical switching of pre-existing neurophysiological pathways. Serotonin is one of the major neurotransmitters in the central nervous system responsible for the modulation of physiological and behavioural traits, in particular social behaviour. The relative importance of serotonin in modulating optimal social responses to the available social information (i.e., social competence) is yet unknown. Here we investigate how serotonin and the serotonin 1 A receptor (5-HT1A) modulate social competence in a competitive context. In the cooperatively breeding cichlid Neolamprologus pulcher, we pharmacologically manipulated the serotonin availability and 5-HT1A activity to test their effects on social behaviours during an asymmetric contest between the owner of a defended territory containing a shelter and an intruder devoid of a territory. In this contest, the adequate response by the intruders, the focal individuals in our study, is to show submissive behaviour in order to avoid eviction from the vicinity of the shelter. While the serotonin enhancer Fluoxetine did not affect the frequency of submission towards territory owners, reducing serotonin by a low dosage of 4-Chloro-DL-phenylalanine (PCPA) increased submissive behaviour. Furthermore, threat displays towards territory owners were reduced at high dosages of Fluoxetine and also at the lowest dosage of PCPA. 5-HT1A activation increased threat displays by intruders, indicating that this receptor may not be involved in regulating social competence. We conclude that serotonin, but not its receptor 5-HT1A plays an important role in the regulation of social competence.


Assuntos
Ciclídeos , Serotonina , Animais , Habilidades Sociais , Fluoxetina/farmacologia , Comportamento Social , Ciclídeos/fisiologia , Fenclonina/farmacologia , Receptor 5-HT1A de Serotonina
6.
PLoS One ; 18(12): e0295137, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38150445

RESUMO

Natural products and traditional remedies have become more popular over the years since they have less harmful side effects and are considered environmentally friendly. In this study we aimed to investigate the potential of Gynura procumbens extract (GPE), a well-known traditional medicinal plant extract, on the stress modulation of Oreochromis niloticus (Nile tilapia). Four different experimental groups: control, stress, prevention, and treatment were monitored for 12 weeks. Hydrocortisone (0.01% of body weight) was incorporated with the feed to induce the stress response in stress, prevention and treatment groups. Feed was also supplemented with 0.15% GPE of body weight for the prevention and treatment groups. Cortisol concentration was reduced significantly in the prevention (1870.52 pg/mL; p = 0.006) and treatment (2925.91 pg/mL; p = 0.002) groups than the stress group (7614.22 pg/mL). The result is substantiated by significant decrease in blood glucose level in prevention (29.5 mg/dL; p = 0.002) and treatment (31.5 mg/dL; p = 0.006) groups, compared to stress group (47.33 mg/dL) at the end of the experiment. Considering the current finding, we can conclude the GPE has potential to be used as therapeutic option for stress regulation however there is a room for further detailed study to understand the in-depth mechanism.


Assuntos
Ciclídeos , Animais , Ciclídeos/fisiologia , Suplementos Nutricionais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Peso Corporal , Ração Animal , Dieta
7.
Fish Physiol Biochem ; 49(6): 1461-1477, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37987935

RESUMO

Growing Nile tilapia in brackish water showed promising results, but the possibility of ammonia exposure can interrupt health status and productivity. Herein, the study tested the combined effects of water salinity and ammonia exposure on the antioxidative status, serum biochemistry, and immunity of Nile tilapia. Fish were assigned to eight groups where fish were reared in saline water (5, 10, and 15 ppt) with continuous or intermittent (every 3 days) total ammonia (TAN) exposure (5 mg TAN/L) (2 × 4 factorial design). After 30 days, the water salinity, TAN, and their interaction were markedly (P < 0.05), affecting the growth performance (final weight, weight gain, and specific growth rate) and survival rate of Nile tilapia. The growth performance and survival rate were markedly lower in tilapia grown in 15 ppt with continuous TAN exposure than in the remaining groups. The results showed that fish exposed to higher salinity levels (10 and 15 ppt) and continuous TAN exposure had a more robust antioxidative response, as evidenced by higher superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) activities and lower malondialdehyde (MDA) levels in the homogenates of the gills, intestines, and livers. The gills were notably affected, with congestion of primary filaments blood vessels and degeneration or shedding of secondary filaments epithelium, especially at salinity levels of 10 and 15 ppt. Additionally, the intestines displayed hyperplasia and inflammatory cell infiltration of intestinal mucosa at 5-10 ppt salinity, degeneration and sloughing of the intestinal epithelium at 15 ppt saline water, and increased goblet cell number at salinity of 10 ppt. The study found that continuous TAN exposure had a more significant impact on the fish, especially at higher salinity levels. Water salinity, TAN, and their interaction significantly affected all measured blood bio-indicators (total, albumin, globulin, ALT, AST, creatinine, urea, glucose, and cortisol levels). The phagocytic activity and index were markedly lowered in fish reared in 15 ppt with continuous TAN exposure, while the lysozyme activity was decreased in fish grown in 5, 10, and 15 ppt with continuous TAN exposure. In conclusion, Nile tilapia showed the possibility of growth with normal health status in brackish water (5-10 ppt); however, continuous TAN exposure can impair the productivity of tilapia, especially with high salinity (15 ppt).


Assuntos
Ciclídeos , Tilápia , Animais , Antioxidantes , Ciclídeos/fisiologia , Amônia/toxicidade , Salinidade , Ração Animal/análise , Dieta , Suplementos Nutricionais
8.
Anim Cogn ; 26(6): 1959-1971, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37851187

RESUMO

Cognitive flexibility, the ability to modify one's decision rules to adapt to a new situation, has been extensively studied in many species. In fish, though, data on cognitive flexibility are scarce, especially in the wild. We studied a lekking species of cichlid fish in Lake Tanganyika, Aulonocranus dewindti. Males create sand bowers as spawning sites and maintain them by removing any objects falling into it. In the first part of our experiment, we investigated the existence of spontaneous decision rules for the maintenance of the bowers. We showed that if a snail shell and a stone are placed in their bower, fish prefer to remove the shell first. In the second phase of our experiment, we took advantage of this spontaneous decision rule to investigate whether this rule was flexible. We tested five individuals in a choice against preference task, in which the fish had to modify their preference rule and remove the stone first to be allowed to then remove the shell and have a clean bower. While there was no overall trend towards flexibility in this task, there was variation at an individual level. Some individuals increased their preference for removing the shell first, deciding quickly and with little exploration of the objects. Others were more successful at choosing against preference and showed behaviours suggesting self-regulatory inhibition abilities. Bower-building cichlids could therefore be a promising model to study cognitive flexibility, and other aspects of animal cognition in the wild.


Assuntos
Ciclídeos , Masculino , Animais , Ciclídeos/fisiologia , Cognição
9.
J Chem Neuroanat ; 133: 102342, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37722435

RESUMO

Dopamine is present in all vertebrates and the functional roles of the subsystems are assumed to be similar. Whereas the effect of dopaminergic modulation is well investigated in different target systems, less is known about the factors that are causing the modulation of dopaminergic cells. Using the zebra mbuna, Pseudotropheus zebra, a cichlid fish from Lake Malawi as a model system, we investigated the activation of specific dopaminergic cell populations detected by double-labeling with TH and pS6 antibodies while the animals were solving different learning tasks. Specifically, we compared an intense avoidance learning situation, an instrumental learning task, and a non-learning isolated group and found strong activation of different dopaminergic cell populations. Preoptic-hypothalamic cell populations respond to the stress component in the avoidance task, and the forced movement/locomotion may be responsible for activation in the posterior tubercle. The instrumental learning task had little stress component, but the activation of the raphe superior in this group may be correlated with attention or arousal during the training sessions. At the same time, the weaker activation of the nucleus of the posterior commissure may be related to positive reward acting onto tectal circuits. Finally, we examined the co-activation patterns across all dopaminergic cell populations and recovered robust differences across experimental groups, largely driven by hypothalamic, posterior tubercle, and brain stem regions possibly encoding the valence and salience associated with stressful stimuli. Taken together, our results offer some insights into the different functions of the dopaminergic cell populations in the brain of a non-mammalian vertebrate in correlation with different behavioral conditions, extending our knowledge for a more comprehensive view of the mechanisms of dopaminergic modulation in vertebrates.


Assuntos
Ciclídeos , Animais , Ciclídeos/fisiologia , Encéfalo , Neurônios Dopaminérgicos , Recompensa , Aprendizagem da Esquiva
10.
Bull Environ Contam Toxicol ; 111(1): 13, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37439925

RESUMO

The effect of daily ingestion of polypropylene microplastic on the health of tilapia, Oreochromis niloticus, was evaluated. 60 fish (± 200 g) were placed in 6 aquariums (n = 10, 100 L each), constituting the following treatments: Control (without the addition of polymer), fed with 100 and 500 µg of polypropylene/kg of body weight (b.w.), respectively. After 30 days of feeding, the animals were submitted to blood collection for hemogram and biochemical study and later euthanized for gut microbiological analysis, somatic index of liver, spleen, heart, kidney, stomach, and intestine. In the serum biochemical study, an increase in cholesterol and serum Aspartate Aminotransferase (AST) activity levels was observed in animals treated with 500 µg of polypropylene. Tilapia-fed polypropylene in the diet showed an increase in thrombocyte and total leukocyte counts, marked by a significant increase in the number of circulating lymphocytes. The results of the somatic study revealed a significant increase in the stomach, liver, and heart of tilapia fed with the polymer. Increase in the number of Gram-negative microorganisms and decrease in mesophilic aerobic microorganisms were observed in the gut of fish exposed to the polymer, including a dose-response effect was observed for these analyses. Therefore, tilapias fed daily with diets containing polypropylene for 30 consecutive days showed deleterious effects, resulting in systemic inflammatory disturbs by altering liver functions, leukocyte profile, and organ morphometry, as well as changes in the intestinal microbiota. Such results demonstrate the impairment of fish health, highlighting the need for further studies that evaluate the impact of microplastics on aquatic organisms.


Assuntos
Ciclídeos , Tilápia , Animais , Ciclídeos/fisiologia , Microplásticos , Plásticos , Polipropilenos/toxicidade , Dieta , Ingestão de Alimentos , Ração Animal/análise , Suplementos Nutricionais/análise
11.
J Environ Sci Health B ; 58(6): 477-488, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37431061

RESUMO

In aquaculture, drugs are often abused to accomplish disease control without considering the negative effects on fish health. This study aimed at elucidating the pernicious effects of in-feed antiparasitic drug emamectin benzoate (EB) abuse on the haemato-biochemistry and erythro-morphometry of healthy Nile tilapia Oreochromis niloticus. The fish were fed EB at 50 µg (1×) and 150 µg/kg biomass/d (3×) for 14 d as against the recommended 7 d and periodically assessed the blood parameters. A significant dose- and time-dependent reduction in feed intake, survival, total erythrocytes (TEC), monocytes (MC), hemoglobin (Hb), hematocrit (Ht) and mean corpuscular Hb concentration were noted. The total leukocytes (TLC), thrombocytes (TC), lymphocytes (LC) and neutrophils (NC) markedly augmented. The EB-dosing altered the fish physiology by enhancing the glucose, alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and creatinine and reducing the calcium, chloride and acetylcholinesterase (AChE) levels dose-dependently. The fish recovered within 4 weeks in the 1× group post-dosing but persevered in the overdosed group. The erythro-cellular and nuclear dimensions were reduced with the increase in dose and normalized after the cessation of dosing, except for nuclear volume. The erythro-morphological alterations were more prominent in the overdosed group. The results implied the pernicious effect of oral EB medication on the biological responses of fish if abused.


Assuntos
Ciclídeos , Animais , Ciclídeos/fisiologia , Acetilcolinesterase , Eritrócitos , Ivermectina/toxicidade , Ração Animal/análise , Dieta , Suplementos Nutricionais
12.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1502-1516, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37431590

RESUMO

A feeding trial for 90 days was conducted on Nile tilapia (Oreochromis niloticus) (average weight: 25.50 ± 0.05 g) to evaluate the effect of dietary inclusion of Azadirachta indica seed protein hydrolysate (AIPH). The evaluation included the impact on the growth metrics, economic efficiency, antioxidant potential, hemato-biochemical indices, immune response, and histological architectures. A total of 250 fish were randomly distributed in five treatments (n = 50) and received diets included with five levels of AIPH (%): 0 (control diet, AIPH0), 2 (AIPH2), 4 (AIPH4), 6 (AIPH6) or 8 (AIPH8), where AIPH partially replace fish meal by 0, 8.7%, 17.4%, 26.1%, and 34.8%, respectively. After the feeding trial, a pathogenic bacterium (Streptococcus agalactiae, 1.5 × 108 CFU/mL) was intraperitoneally injected into the fish and the survival rate was recorded. The results elucidated that AIPH-included diets significantly (p < 0.05) enhanced the growth indices (final body weight, total feed intake, total body weight gain, and specific growth rate) and intestinal morpho-metrics (villous width, length, muscular coat thickness, and goblet cells count) in comparison to the control diet, with the AIPH8 diet recording the highest values. Dietary AIPH inclusion significantly improved (p < 0.05) the economic efficacy indicated by reduced feed cost/kg gain and increased performance index. The fish fed on the AIPH diets had noticeably significantly higher (p < 0.05) protein profile variables (total proteins and globulin) and antioxidant capabilities (superoxide dismutase and total antioxidant capacity) than the AIPH0 group. The dietary inclusion of AIPH significantly (p < 0.05) boosted the haematological parameters (haemoglobin, packed cell volume %, and counts of red blood cells and white blood cells) and immune indices (serum bactericidal activity %, antiprotease activity, and immunoglobulin M level) in a concentration-dependent manner. The blood glucose and malondialdehyde levels were significantly (p < 0.05) lowered by dietary AIPH (2%-8%). The albumin level and hepatorenal functioning parameters (aspartate aminotransferase, alanine aminotransferase, and creatinine) were not significantly (p > 0.05) altered by AIPH diets. Additionally, AIPH diets did not adversely alter the histology of the hepatic, renal or splenic tissues with moderately activated melano-macrophage centres. The mortality rate among S. agalactiae-infected fish declined as dietary AIPH levels rose, where the highest survival rate (86.67%) was found in the AIPH8 group (p < 0.05). Based on the broken line regression model, our study suggests using dietary AIPH at the optimal level of 6%. Overall, dietary AIPH inclusion enhanced the growth rate, economic efficiency, health status, and resistance of Nile tilapia to the S. agalactiae challenge. These beneficial impacts can help the aquaculture sector to be more sustainable.


Assuntos
Azadirachta , Ciclídeos , Doenças dos Peixes , Animais , Antioxidantes/metabolismo , Suplementos Nutricionais , Ciclídeos/fisiologia , Hidrolisados de Proteína , Streptococcus agalactiae/metabolismo , Azadirachta/metabolismo , Proteínas de Plantas , Desenvolvimento Econômico , Resistência à Doença , Dieta/veterinária , Peso Corporal , Ração Animal/análise , Doenças dos Peixes/prevenção & controle , Doenças dos Peixes/microbiologia
13.
Aquat Toxicol ; 261: 106630, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37406490

RESUMO

An acute exposure study of mancozeb (MAZ) fungicide was applied on Oreochromis niloticus for 96-h duration. Three hundred fish (20.50 ± 1.60 g) were assigned into six groups (50 fish/ group; 10 fish/replicate) and exposed to different six concentrations (0, 4, 8, 12, 16, and 20 mg L-1) of MAZ for 96-h. The Probit analysis program was used to compute the 96-h lethal concentration 50 (96-h LC50) of MAZ. During the exposure duration, the fish's behavior, clinical symptoms, and mortalities were recorded daily. After the exposure period was ended, the hematological, biochemical, immunological, and oxidant/antioxidant parameters were evaluated. The results of this study recorded the 96-h LC50 of MAZ for O. niloticus to be 11.49 mg L-1. Acute MAZ exposure badly affected the fish's behavior in the form of increased the breath gasping and swimming activity with aggressive mode. The exposed fish showed excessive body hemorrhages and fin rot. The survival rate of the exposed fish to MAZ was 100, 80, 66, 50, 38, and 30% in 0, 4, 8, 12, 16, and 20 mg L-1 MAZ, respectively. The hematological indices (red blood cell count, hemoglobin, packed cell volume%, and white blood cell count) were significantly decreased by increasing the MAZ exposure concentration (8-20 mg L-1). The acetylcholine esterase activity and immune indices (lysozyme, nitric oxide, immunoglobulin M, complement 3) were decreased by MAZ exposure (4-20 mg L-1). Acute MAZ exposure induced hepato-renal dysfunction and elevated stress-related parameter (cortisol) by increasing the MAZ concentration. A significant reduction in the antioxidant parameters (total antioxidant activity, catalase, and superoxide dismutase) with increasing the lipid peroxidation marker (malondialdehyde) was noticed by acute MAZ exposure (4 -20 mg L-1) in O. niloticus. Based on these outcomes, the MAZ exposure induced toxicity to the fish evident in changes in fish behavior, neurological activity, hepato-renal functioning, and immune-antioxidant responses which suggest physiological disruption.


Assuntos
Ciclídeos , Fungicidas Industriais , Poluentes Químicos da Água , Animais , Antioxidantes/metabolismo , Fungicidas Industriais/toxicidade , Ciclídeos/fisiologia , Etologia , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Dieta , Suplementos Nutricionais/análise , Ração Animal/análise
14.
J Therm Biol ; 115: 103596, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37327616

RESUMO

In nature, water temperature experiences daily variations known as thermocycles. Temperature is the main environmental factor that influences sex determination in most teleost fish. The purpose of this study was to examine the effects of rearing temperature (thermocycle (TC) vs. constant (CTE)) on development and a posterior thermal shock throughout the period of sex differentiation of Nile tilapia (Oreochromis niloticus). Embryos and larvae were kept under two temperature regimes: TC of 31 °C:25 °C day:night vs. CTE of 28 °C from 0 to 11 dpf. After this period, the larvae from each group were subjected to either heat treatment (HT, 36 °C for 12 days) or kept under the same rearing temperatures until 23 dpf (Control, C). Then all the groups remained at constant temperature until 270 dpf, when blood and gonads were collected. Larval samples were used to examine the expression of genes related to male (amh, ara, sox9a, dmrt1a) and female (cyp19a1a, foxl2, era) sexual differentiation. In juveniles, sex was characterized by histology, the gonadal expression of the genes involved in the sex steroid synthesis was analyzed by qPCR, and plasma testosterone (T) and estradiol (E2) levels were analyzed by ELISA. In larvae, daily TCs increased the survival rate against HT and up-regulated the expression of ovarian differentiation genes. In juveniles, TC + C induced a higher proportion of females and higher cyp19a1a expression compared to CTE + C. HT induced changes in the CTE group by up-regulating testicular differentiation genes and down-regulating female promoting genes, which did not occur in the TC group. Juveniles from TC + C group presented a higher proportion of females with higher E2 and cyp19a1a than CTE + HT. Fish from the CTE + HT group showed a higher percentage of males with highest T and amh. These findings indicate that daily TCs during larval development promote ovarian differentiation and diminish the masculinizing effects of HT.


Assuntos
Ciclídeos , Diferenciação Sexual , Animais , Masculino , Feminino , Diferenciação Sexual/genética , Ciclídeos/fisiologia , Temperatura , Gônadas , Ovário , Larva
15.
J Exp Biol ; 226(14)2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37357638

RESUMO

Neotropical cichlids demonstrate an enormous diversity of pigment patterns, a morphological trait that plays an important role in adaptation and speciation. It has been suggested that alterations of the activity of the thyroid axis, one of the main endocrine axes regulating fish ontogeny, are involved in the development and diversification of pigment patterns in Neotropical cichlids. To test this hypothesis, we assessed thyroid hormone developmental dynamics and pigment patterning, and experimentally induced hyperthyroidism and hypothyroidism at different developmental stages in the convict cichlid, Amatitlania nigrofasciata, and blue-eye cichlid, Cryptoheros spilurus. We found that the two species display a similar type of coloration development and similar reactions to changes of thyroid hormone level, but species-specific differences in hormonal dynamics and thyroid hormone responsiveness. These findings indicate that thyroid hormone is a necessary but not sufficient signal to induce the transition from larval to juvenile coloration, and is a component of a complex, concerted endocrine cascade that drives skin development.


Assuntos
Ciclídeos , Animais , Ciclídeos/fisiologia , Hormônios Tireóideos , Adaptação Fisiológica
16.
Zoolog Sci ; 40(2): 160-167, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37042695

RESUMO

Lateral preference in behaviors has been widely documented in many vertebrates and invertebrates. Such preferences are strange, puzzling, and on the surface, not adaptive. However, behavioral laterality may increase an individual's fitness as well as foraging accuracy and speed. There is little experimental evidence regarding the developmental process of laterality, and unsolved questions have perplexed researchers for several decades. Related to these issues, here, I review that the scale-eating cichlid Perissodus microlepis found in Lake Tanganyika is a valuable model to address the developmental mechanism of animal laterality. The scale-eating cichlid has pronounced behavioral laterality and uses its asymmetric mouth during feeding events. Recent studies have shown that behavioral laterality in this fish depends on both genetic factors and past experience. The attack-side preference of scale eaters is an acquired trait in an early developmental stage. Juvenile fish empirically learn which side of the prey is more effective for tearing scales and gradually select the dominant side for attacking. However, the superior kinetics of body flexion during the dominant side attack has innate characteristics. Additionally, left-right differences in scale-eater mandibles also develop during ontogeny. Further progress toward understanding the comprehensive mechanisms of laterality should address the following persistent barriers: (1) the effects of phylogenetic constraints and ecological factors on the level of laterality; and (2) the neuronal and molecular mechanisms that produce left-right behavioral differences.


Assuntos
Ciclídeos , Animais , Ciclídeos/fisiologia , Tanzânia , Filogenia , Lateralidade Funcional , Lagos
17.
Horm Behav ; 152: 105365, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119610

RESUMO

An individual's social environment can have widespread effects on their physiology, including effects on oxidative stress and hormone levels. Many studies have suggested that variation in oxidative stress experienced by individuals of different social statuses might be due to endocrine differences, however, few studies have evaluated this hypothesis. Here, we assessed whether a suite of markers associated with oxidative stress in different tissues (blood/plasma, liver, and gonads) had social status-specific relationships with circulating testosterone or cortisol levels in males of a cichlid fish, Astatotilapia burtoni. Across all fish, blood DNA damage (a global marker of oxidative stress) and gonadal synthesis of reactive oxygen species [as indicated by NADPH-oxidase (NOX) activity] were lower when testosterone was high. However, high DNA damage in both the blood and gonads was associated with high cortisol in subordinates, but low cortisol in dominants. Additionally, high cortisol was associated with greater production of reactive oxygen species (greater NOX activity) in both the gonads (dominants only) and liver (dominants and subordinates). In general, high testosterone was associated with lower oxidative stress across both social statuses, whereas high cortisol was associated with lower oxidative stress in dominants and higher oxidative stress in subordinates. Taken together, our results show that differences in the social environment can lead to contrasting relationships between hormones and oxidative stress.


Assuntos
Ciclídeos , Hidrocortisona , Animais , Masculino , Ciclídeos/fisiologia , Status Social , Espécies Reativas de Oxigênio , Estresse Oxidativo , Testosterona
18.
J Therm Biol ; 113: 103544, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37055103

RESUMO

Ectothermic vertebrates, e.g. fish, maintain their body temperature within a specific physiological range mainly through behavioural thermoregulation. Here, we characterise the presence of daily rhythms of thermal preference in two phylogenetically distant and well-studied fish species: the zebrafish (Danio rerio), an experimental model, and the Nile tilapia (Oreochromis niloticus), an aquaculture species. We created a non-continuous temperature gradient using multichambered tanks according to the natural environmental range for each species. Each species was allowed to freely choose their preferred temperature during the 24h cycle over a long-term period. Both species displayed strikingly consistent temporal daily rhythms of thermal preference with higher temperatures being selected during the second half of the light phase and lower temperatures at the end of the dark phase, with mean acrophases at Zeitgeber Time (ZT) 5.37 h (zebrafish) and ZT 12.5 h (tilapia). Interestingly, when moved to the experimental tank, only tilapia displayed consistent preference for higher temperatures and took longer time to establish the thermal rhythms. Our findings highlight the importance of integrating both light-driven daily rhythm and thermal choice to refine our understanding of fish biology and improve the management and welfare of the diversity of fish species used in research and food production.


Assuntos
Ciclídeos , Tilápia , Animais , Peixe-Zebra , Ciclídeos/fisiologia , Temperatura , Ritmo Circadiano/fisiologia
19.
J Exp Biol ; 226(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36951397

RESUMO

Parental care has evolved several times and is present across taxa. Parental care behaviors, such as food provisioning and protection, are critical for offspring success. However, infanticide can co-exist with parental care in the same species. The mechanisms underlying the switch from care to consumption and from offspring dependence to independence are relatively unknown, especially in fishes, the oldest and largest group of vertebrates. Mouthbrooding, an extreme example of parental care present in dozens of genera of fishes, provides an excellent opportunity to investigate the brain regions important for parental care. The maternal mouthbrooding African cichlid fish Astatotilapia burtoni broods developing young inside the mouth for approximately 14 days, then provides post-release maternal care by protecting fry inside the mouth when threatened. Following the post-release maternal care phase, females can exhibit infanticide and consume their own offspring. We used immunohistochemistry for the neural activation marker pS6 to identify differences in neural activation among mouthbrooding, maternal-care-providing and infanticide-exhibiting females, and between pre- and post-release fry. We identified five brain regions (Dc-5, ATn, nPPa, Vd-c and Dl-g) that are differentially activated among mouthbrooding, maternal care and infanticide females as well as six regions (Dm, Vv, Vd, Vs-m, TPp, PGZ and INL of retina) differentially activated between pre- and post-release fry. This study identifies both shared and distinct circuitry that may support transitions between parental care states and from care to infanticide, as well as regions in developed fry that support the transition from pre- to post-release.


Assuntos
Ciclídeos , Reprodução , Animais , Feminino , Reprodução/fisiologia , Infanticídio , Ciclídeos/fisiologia
20.
Brain Struct Funct ; 228(3-4): 859-873, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36920630

RESUMO

The neural correlates of most cognitive functions in fish are unknown. This project aimed to identify brain regions involved in visual learning in the cichlid fish Pseudotropheus zebra. The expression of the protein pS6 was measured in 19 brain areas and compared between groups of individuals subjected to four different behavioral contexts (control, avoidance, trained, and novelty groups). Control group individuals were sacrificed with minimal interactions. Fish in the avoidance group were chased with a net for an hour, after which they were sacrificed. Individuals in the trained group received daily training sessions to associate a visual object with a food reward. They were sacrificed the day they reached learning criterion. Fish in the novelty group were habituated to one set of visual stimuli, then faced a change in stimulus type (novelty stimulus) before they were sacrificed. Fish in the three treatment groups showed the largest activation of pS6 in the inferior lobes and the tectum opticum compared to the control group. The avoidance group showed additional activation in the preoptic area, several telencephalic regions, the torus semicircularis, and the reticular formation. The trained group that received a food reward, showed additional activation of the torus lateralis, a tertiary gustatory center. The only area that showed strong activation in all three treatment groups was the nucleus diffusus situated within the inferior lobe. The inferior lobe receives prominent visual input from the tectum via the nucleus glomerulosus but so far, nothing is known about the functional details of this pathway. Our study showed for the first time that the inferior lobes play an important role in visual learning and object recognition.


Assuntos
Ciclídeos , Animais , Ciclídeos/fisiologia , Encéfalo , Telencéfalo , Área Pré-Óptica , Equidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...